Теория вероятностей, в отличие от классического математического анализа, часто оперирует примерами и задачами из повседневной жизни. Применение ее в таких играх, как покер и рулетка, может существенно увеличить выигрыш, особенно если интуиция – не самая сильная ваша сторона. С другой стороны, законы теории вероятностей базируются на простой логике и могут быть поняты и освоены каждым. Поэтому читателю будет полезно ознакомиться с основными понятиями и принципами решения задач по данной теме.
 

Исходя из определения, вероятность наступления события (будем называть это событие А) есть отношения количества вариантов развития, где А происходит (m), к общему количеству вариантов развития (m).

Формула классической вероятности

Очевидно, что m всегда меньше или равно n, поэтому величина P никогда не превышает единицы. С другой стороны, m и n неотрицательны, поэтому вероятность не может быть меньше нуля. Часто величину вероятности выражают в процентах, умножая исходное выражение на 100%.
 

Попробуйте ответить на вопрос:

Какое количество автомобилей с одинаковыми цифрами на номере вы скорее всего встретите среди 300 проехавших мимо?

 

Теория вероятностей тесно связана с комбинаторикой – разделом математики, изучающем в том числе размещения, перестановки, сочетания элементов из множеств. Читателю стоит освоить следующие понятия: размещение, сочетание, размещение и сочетание с повторением из n различных элементов по m в каждом, перестановка из n элементов.
 

Например:

Сколькими способами можно взять три разных карточных короля – сочетание из 4 элементов по 3 в каждом?

Если комбинации из трех карт могут еще отличаться порядком – например, пики–крести–черви и черви-пики-крести, – размещение из 4 элементов по 3 в каждом. Если масти могут совпадать, но порядок не важен – сочетание с повторением, а если все-таки важен – то размещение с повторением. А вот сколькими способами можно упорядочить три карты – перестановка из 3 элементов. С формулами для расчета данных величин читатель может ознакомиться в любом учебном пособии по дисциплине «Теория вероятностей и математическая статистика».
 

Определите, сколькими способами можно наугад достать три белых шара из урны, где 5 белых шаров и 2 черных? Какова при этом вероятность такого исхода?

Теория вероятностей

 

В качестве следующего этапа в освоении теории вероятностей следует изучить связи между вероятностями различных событий. Читателю стоит ознакомиться с такими понятиями, как совместные и несовместные события, благоприятствующие и противоположные события, сумма(объединение) событий, произведение(совмещение) событий, полная группа событий.
 

В качестве примера рассмотрим следующую ситуацию.

Лучник стреляет в мишень, при этом событие А состоит в том, что он поражает ее, событие А1 – стрела попадает в «десятку», а событие В – стрела летит в «молоко».

События А и B являются несовместными, так же как события А1 и В. События А и А1 являются совместными. Событие А1 благоприятствует событию А, но обратное утверждение неверно. Событие B является противоположным по отношению к А и А1. События А и В образуют полную группу событий, а А1 и В или А и А1 – нет.
 

Совмещение и произведение событий очень наглядно иллюстрируется графически. Рассмотрим события в качестве контуров, заключающих в себе все исходы, при которых эти события происходят. При этом площадь под контуром А1 также принадлежит к контуру А. Белым цветом будем обозначать пустое множество, а желтым — результаты суммы (объединения) или умножения (совмещения) различных комбинаций из А, А1 и В. Почему контур А1 внутри А?

Множества

Суммой (объединением) А и B будет событие А+В:

Сумма событий

Произведением (совмещением) А и B будет событие AB, которое невозможно, так как контуры А и B не пересекаются:

Произведение событий

Сумма А + А1:

Сумма событий

Произведение АА1:

Произведение событий

Сумма А1:

terver_pic7

Произведение А1В:

terver_pic8

Cо всеми вышеизложенными понятиями и с формулами для сложения и умножения вероятностей читатель аналогичным образом может ознакомиться в любом учебном пособии по данному предмету. Изображение вероятностей в качестве геометрических контуров часто помогает при решении задач с множеством заданных условий и сложными связями между ними.

Попробуйте самостоятельно изобразить события А+А1В, А(А1+В), АВ +А1.

 

Если рассматривать цепочку событий, происходящих последовательно, необходимо ввести понятие условной вероятности PA(B) – вероятности события B, при условии, что А наступило. Читателю следует ознакомиться с формулой полной вероятности и с формулой Бейеса.
 

В качестве примера условной вероятности существует очень интересная задача, называемая парадоксом Монти Холла:

Представьте, что вы – участник шоу, в котором вам предстоит выбирать из трех закрытых дверей одну, за которой находится приз. За двумя другими дверями ничего нет. Ведущий знает, где находится приз, и предлагает вам выбрать дверь. После вашего предположения ведущий не открывает выбранную вами дверь, но из двух оставшихся открывает ту, за которой ничего нет. После этого он предлагает вам либо оставить свой выбор прежним, либо выбрать другую дверь. Станете ли вы менять свой выбор и почему?
Парадокс Монти Холла

 

Для решения задач с большим количеством испытаний классические формулы с использованием сочетаний и размещений неудобны, так как вычисляются с большим трудом (чему равен факториал 10000?). Как правило, подобные задачи легко узнаваемы, и их решение заключается в применении одной формулы, в выборе оной и состоит сложность задания. Читателю стоит освоить понятия и области применения для формул Бернулли, Лапласа и Пуассона.
 

При написании статьи автор использовал учебное пособие «Элементы теории вероятностей и математической статистики», авт. М.Ф.Рушайло, изд. РХТУ им. Д.И.Менделеева, 2005.
 
 

Решение теории вероятностей на заказ

Мы беремся решать задачи по теории вероятностей. Чтобы заказать у нас работу, вам нужно только прикрепить файл и указать срок.
Узнать цену работы можно абсолютно бесплатно.